
Vocabulaire programmation objet.

B ilan

 En Programmation Orientée Objet, on fabrique de nouveau types de données (int, str, bool, etc.)
correspondant aux besoin du programme que l’on construit. On réfléchit alors aux caractéristiques
des objets qui seront de ce type (les attributs) et aux actions possibles à partir de ces objets (les
méthodes).
Ces caractéristiques et ces actions sont regroupées dans un code spécifique associé au type de
données, appelé classe.

Classe, Attributs, Méthodes, Accesseur et mutateurs, encapsulation,
agrégation.

— Le type de données avec ses caractéristiques et ses actions possibles s’appelle classe.
— Les caractéristiques (ou variables) de la classe s’appellent les attributs.
— Les actions possibles à effectuer avec la classe s’appellent les méthodes.
— La classe définit donc les attributs et les actions possibles sur ces attributs, les méthodes.

— Un objet du type de la classe s’appelle une instance de la classe et la création d’un objet d’une
classe s’appelle une instanciation de cette classe.
— Lorsqu’on définit les attributs d’un objet de la classe, on parle d’instanciation.
— L’encapsulation désigne le principe de regrouper des données brutes avec un ensemble de
routines (méthodes) permettant de les lire ou de les manipuler.
— On dit que les attributs et les méthodes sont encapsulés dans la classe.

— Constructeur : la manière « normale » de spécifier l’initialisation d’un objet est d’écrire un
constructeur . Son nom est __init__ ().
— Accesseur ou « getter » : une fonction qui retourne la valeur d’un attribut de l’objet. Par
convention son nom est généralement sous la forme : getNom_attribut().
— Un Mutateur ou setter : une procédure qui permet de modifier la valeur d’un attribut d’un
objet. Son nom est généralement sous la forme : setNom_attribut().

— But de l’encapsulation : cacher la représentation interne des classes,
— pour simplifier la vie du programmeur qui les utilise ;
— pour masquer leur complexité (diviser pour régner) ;
— pour permettre de modifier celle-ci sans changer le reste du programme.
— La liste des méthodes devient une sorte de mode d’emploi de la classe.

— L’agrégation est le fait de construire un objet (en créant une classe) en faisant appel à plusieurs
autres classes, un objet agrégat constitué d’objet composant.
Cette architecture permet de transformer une classe sans toucher aux autres, et donc de se
partager le travail dans une équipe.

Exemple de mise à disposition de classes dans un module.
- Créer un fichier figures_geometriques.py (contenant des classes des différentes figures,
Triangle, Carre, Rectangle) dont le nom, figures_geometriques est le nom du module.
- Dans un autre fichier où l’on veut utiliser les figures déjà crées, il faut importer le fichier précédent
soit :
- import figures_geometriques puis lorsqu’on en a besoin, écrire
tri = figures_géometriques.Triangle
- ou bien from figures_geometriques import Triangle puis lorsqu’on en a besoin, écrire
tri = Triangle

Exemples de classe.
Exemple 1.
Exemples issus du livre de G, SWINNEN https://inforef.be/swi/download/apprendre_python3_5.pdf disponible sous licence CC
BY-NC-SA 2.0

class Time :
 "une classe temporelle"

 def __init__(self, hh =12, mm =0, ss =0):

 self.heure =hh
 self.minute =mm
 self.seconde =ss

 def affiche_heure(self):
 print("{0}:{1}:{2}".format(self.heure, self.minute, self.seconde))

 def set_heure(self,h) :
 if h>=0 and h<=24 :
 self.heure=h

tstart = Time()

tstart.affiche_heure()

tstart.set_heure(13)

recreation = Time(10, 15, 18)

recreation.affiche_heure()

Création d’une classe Time :
Par convention, Les noms de classe commencent par une
majuscule.
Pas de parenthèse si la classe n’a pas d’héritage.
Les méthodes (fonctions) de la classe Time seront indentés
sous celle-ciDocumentation qui s’affichera

en utilisant la fonction help()

méthode constructeur qui sera appelée lors de la
l’instanciation (création) d’un objet de la classe Time

Attributs (variables) qui seront initialisés lors de la création
de l’objet

méthode utilisable avec toutes les instances de la classe
Time. Cette méthode sera appelée sans arguments

Le paramètre self est nécessaire, il désigne l’instance à
laquelle la méthode est associée

InstantiationInstantiation de la classe Time (création d’un objet) sans passage
de paramètre car les arguments ont des valeurs par défaut.

On obtiendra l’affichage 12:0:0

Instantiation de la classe Time (création d’un objet) avec passage
de paramètre. La méthode __init__ va créer les attributs
recreation.heure = 10,
recreation.minute = 15
et recreation.seconde=18

On obtiendra l’affichage 10:15:18

Bien que cela ne soit pas obligatoire, il existe une convention de
passer par des getter (ou accesseur en français) et des setter
(mutateurs) pour lire ou changer la valeur d'un attribut

Modifie l’attribut tstart.heure à 13

https://inforef.be/swi/download/apprendre_python3_5.pdf
https://creativecommons.org/licenses/by-nc-sa/2.0/fr/
https://creativecommons.org/licenses/by-nc-sa/2.0/fr/

Exemple 2.
A - Classes et Attributs

Une classe définit et nomme une structure de données qui peut regrouper plusieurs attributs (aussi
appelés champs ou propriétés). Une fois qu'une classe est définie, on peut facilement obtenir
plusieurs instances différentes de cette classe (on dit parfois objet au lieu d'instance). La classe
peut être vue comme un modèle, les instances comme des exemplaires différents du modèle.

-- Définition d'une classe et création des instances ou objets

En Python la définition d'une classe :
- est introduite par le mot-clef class suivi du nom choisi pour la classe commençant par une
majuscule,
- comporte une méthode constructeur __init__ qui permet d'initialiser les attributs des différentes
instances,
- utilise par convention le nom de variable self qui désigne l'instance de la classe,
- self possédant l'extraordinaire particularité d'être obligatoire dans les en-têtes des méthodes
mais ne devant pas être mentionné lors des appels (il est passé en argument de façon
transparente !).

L'exemple ci-contre est archétypique. Lorsqu'on crée
les deux instances (ou objets) anniv_alice et
anniv_bob, la méthode constructeur __init__ est
appelée deux fois avec :
- l'argument self (égal à anniv_alice puis
anniv_bob) qui est transmis de façon invisible,
- les arguments j, m, a (égaux à 7, 12, 2003 puis
29, 2, 2004) qui sont transmis de façon explicite pour
être affectés aux trois attributs jour, mois, annee.

-- Lecture et modification des attributs des instances

On accède en lecture ou en écriture aux attributs des
instances grâce à une notation pointée.
Les attributs sont en effet mutables.
Ainsi pour accéder à l'attribut att d'un objet (ou instance)
obj on utilise la notation obj.att qui permet aussi bien de lire
la valeur de l'attribut que de la modifier.
Ainsi pour accéder à l'attribut att d'un objet (ou instance)
obj on utilise la notation obj.att qui permet aussi bien
de lire la valeur de l'attribut que de la modifier.

B - Méthodes d'instances

Une fois les attributs des objets d'une classe définis, on a souvent besoin de fonctions pour
manipuler les attributs des objets. Ces fonctions, définies à l'intérieur des classes, sont appelées
des méthodes : elles peuvent par exemple modifier certains attributs, renvoyer des valeurs
calculées à partir des attributs, créer de nouveaux objets, modifier d'autres objets etc.

-- Définition des méthodes et appels aux méthodes

Les méthodes sont définies à l'intérieur de la définition des classes comme les fonctions habituelles
à l'aide du mot-clef def. La seule différence, déjà évoquée dans le A, est que leur en-tête comporte
obligatoirement comme premier paramètre self qui ne sera pas mentionné lors des appels
puisqu'il sera remplacé automatiquement de façon invisible lors de l'appel par l'instance elle-même.

class Date:
 '''Une classe pour représenter une date'''

 def __init__(self, j, m, a):
 self.jour = j
 self.mois = m
 self.annee = a

anniv_alice = Date(7, 12, 2003)
anniv_bob = Date(29, 2, 2004)

>>> date_mensualite = Date(7, 10, 2020)
>>> date_paie = Date(30, 9, 2020)
>>> date_paie.mois
9
>>> date_mensualite.jour
7
>>> date_paie.mois = date_paie.mois + 1
>>> date_paie.mois
10

